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Introduction 
 
Once buffers have been created and the pipeline is built it is time to add the shaders. In here                   
we’re going to start with the minimal shader, a sort of “hello world” for GLSL, and add                 
features incrementally until we arrive at a customisable toon shader. 
 
Before we start writing shaders, it is important to understand what is going on on each step                 
of the pipeline. Let’s assume a simple pipeline consisting of only two programmable stages:              
the vertex and fragment stages. 
 
Let’s consider that we have two buffers to feed the pipeline: a buffer with positions, and                
another with colors. The output will be a coloured image. Hence we can have an initial                
representation of our pipeline as a black box with two inputs and an output: 
 

 
Figure 1. The pipeline seen as a black box 

 
Inside the pipeline, the vertices are going to be processed, primitives will be built, fragments               
computed and coloured, until, finally, an image is produced. In more detail, we can consider               
the scheme in Figure 2 as a simplified depiction of the components inside the black box. 
 
Initially, the vertices are fed, one by one, to the vertex shader. This shader processes each                
vertex individually, and outputs the transformed vertices. When primitive connectivity          
information becomes available, the primitives are assembled, and sent to the rasterisation            
phase. This is where the primitive is “split” into pixels, and for each pixel its attributes are                 
computed by interpolation. The set of pixel attributes, including its position on screen, is              
called a fragment. Fragments are then processed, one by one, by the fragment shader,              
which outputs pixels to a final stage where blending and other operations take place, and the                
final pixel is produced. 
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Figure 2. Simplified pipeline diagram 
 

 
 

Figure 3. Data centred diagram 
 
Another perspective is presented in Figure 3, a data centred diagram, that shows what              
happens in each stage.  
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Initially we have vertices, then primitives, and finally fragments. As shown in the diagram,              
after the primitive is assembled, the rasterization process generates a set of fragments.             
Each fragment has an immutable position in the final image. The interpolation phase is              
where all the attributes are going to be computed for each fragment. The interpolated              
attributes are then fed to the fragment shader. 

 

The Minimal Shader 
 
A shader should always begin with the GLSL version for which it was written. This is                
accomplished with pragma ​#version ​. As of OpenGL version 3.3, the GLSL version            
numbers match the GL version (multiplied by 100). 
 
The vertex shader must receive at least the position of the vertices, each a vector of 4 floats,                  
so we’ll consider a single input attribute. The header part of our shader can be: 
 
#version 150 

 

in vec4 position; 

 

Every shader unit we write must have a ​main function, similarly to the C programming               
language, but in GLSL there are no params and no return value. As in C, the main function                  
may call other user defined functions. The main function has access to the inputs of the                
shader, in this case, for each vertex we can access its position as stored in the buffer. The                  
simplest shader we can write is just a pass through.  
 
The position attribute plays a particular role, since the rasterization and interpolation            
processes are based on it, as seen in the diagram from Figure 3. Hence, it is required that                  
GLSL knows which attribute to use as position. This is achieved when we compute the               
outputs of the vertex shader, writing to a particular variable: ​gl_Position ​. 
 
Hence, our main function could be as simple as: 
 
void main() { 

gl_Position = position; 

} 

 

Moving on to the fragment shader. This shader receives a fragment, and it must output a                
color. The only output of the vertex shader is the position, which is a GLSL defined variable.                 
Hence there is no need to declare any input. The shader has access to the input location of                  
the pixel, plus its depth. However, it can not change the input location, only its depth. 
 
The fragment shader needs to declare an output variable for the color, for instance              
outColor ​, and assign it a value.  
 
The code for the minimal fragment shader will assign a constant value to this output. Here is                 
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an example of such a shader: 
 
#version 150 

 

out vec4 outColor; 

 

void main() { 

outColor = vec4(1.0, 1.0, 1.0, 1.0); 

} 

 

Adding Color - Defining Attributes 
 
Next we’re going to add another attribute to our shader, the color. This is going to be 
specified for each vertex. In the OpenGL setup we now need two buffers: one with the 
positions and another with the colors. 
 
The vertex shader is going to be a simple pass through for both attributes. The novelty in this 
example is the color attribute. Whereas for the position, OpenGL has a predefined variable, 
gl_Position ​, for the other attributes there is no such thing. Hence we must declare an 
input and the corresponding output in the vertex shader. 
 
Since the output of the vertex shader is going to be the input of the fragment shader, it 
makes no sense to add a suffix, or prefix, “out” to the variable. A good strategy to keep 
things clear is to add the initial of the shader to the output variable. So our color output can 
be named ​colorV ​. 
 
#version 150 

// input attributes 

in vec4 color; 

in vec4 position; 

// output from the vertex shader 

out vec4 colorV; 

 

void main() { 

colorV = color; 

gl_Position = position;  

} 

 
The fragment shader will receive the fragments with the interpolated colors. So we must              
declare an input variable with the same name as the output from the vertex shader. This is                 
the most simple way for GLSL to determine which variables to pair. 
 
The code for the fragment shader can be as simple as: 
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#version 150 

 

in vec4 colorV; 

 

out vec4 outColor; 

 

void main() { 

outColor = colorV; 

} 

 

Setting Color as a constant per mesh - Uniform Variables 
Setting the color per vertex implies providing an array with as many colors as vertices to the                 
pipeline. In general we tend to have one color per mesh, or draw call, hence the color would                  
behave as a constant for each mesh. GLSL allows us to define per-draw-call constants, with               
the qualifier ​uniform ​. 
 
As the color is only required in the fragment shader we simplify the vertex shader as follows: 
 
#version 150 

 

in vec4 position; 

 

void main() { 

gl_Position = position; 

} 

 
which is basically the first shader we started with. 
 
In the fragment shader the color is not a fragment input anymore, it is now a uniform 
variable. 
 
#version 150 

 

uniform vec4 color; 

 

out vec4 outColor; 

 

void main() { 

outColor = color; 

} 
 

Adding Geometric Transformations - Uniform Variables 
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So far these shaders would draw the triangles considering that the input coordinates were              
already in clip space. This is because the shaders don’t take into account the camera,               
regarding both perspective and viewpoint, as well as possible geometric transformations the            
object may suffer. 
 
Commonly, we create a composite matrix with all these operations included, called the             
Projection View Model matrix. This matrix is constant per draw call, hence it is a uniform                
variable. The transformations in the matrix will be applied to all vertices, hence the vertex               
shader needs to be updated. The new vertex shader is: 
 
#version 150 

 

in vec4 position; 

 

// pvm is a 4x4 matrix 

uniform mat4 pvm; 

 

void main() { 

gl_Position = pvm * position;  

} 

 
The previous fragment shader can be coupled with this fragment shader to produce exactly              
what fixed function OpenGL would provide with no lighting. 

A Simple Toon Shader 
 
A toon character is shaded with only a small set of tones. As opposed to 
real life lighting, there is no continuum of tones. In order to determine the 
tone to use we first compute the intensity which would be reflected by the 
surface according to Lambert’s law for diffuse lighting.  
 
Lambert’s law takes in consideration the surface normal and the direction from the surface to 
the light. The intensity is proportional to the cosine of the angle between these two vectors.  

 
Figure 4 - Lambert’s law 

 
The equation to compute the reflected intensity is: I  
 

 K  os(α)I =  d × KL × c  
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where is the material diffuse coefficient, is the light color intensity, and is the angle Kd       KL        α     
between the normal vector and the light’s direction. 
 
The dot product between two vectors can be written as a function of the cosine of the angle                  
between them 
 

ot(A, ) cos(A, ) d B =  B × A| | × B| |  
 

When the magnitude of both vectors, and , is equal to one, i.e. when both vectors are      A   B           
normalised, the dot product is equal to the cosine of the angle between them, providing a                
very efficient way of incorporating Lambert’s law in our shaders. 
 
A simple algorithm to create toon lighting is as follows: 
 

compute intensity I 

if ( I > threshold1) 

color = vec4(1.0); 

else if ( I > threshold2) 

color = vec4(0.7); 

… 

 

We can define as many tones as desired using the above algorithm, but commonly only               
three or four are used. 

 
In the first version of our implementation, we are going to concentrate the computation on               
the vertex shader. 
 
As attributes for each vertex we need the position and normal vector. We also require the                
transformation matrix from the previous example.  
 
To compute the cosine between the two vectors, the normal and the light direction, these               
must be in the same space. The light direction can be specified in world space or camera                 
space. Specifying the light in world space is more intuitive and does not depend on the                
camera position, hence, it would seem a good option. However, as we’ll see in later               
examples, we will need the light direction in camera space, hence we’re going to use camera                
space as our default for the light direction. This leaves us with two options: 
 

1. Going for the more intuitive approach, we set the light direction in world space and               
transform it to camera space in the shader; 

2. We transform the light direction from world space to camera space in the application              
and provide the light direction in this later space to the shader. 

 
The second option makes more sense, performance wise, since it doesn’t require the shader              
to perform the same calculation, transforming the light direction to camera space, for every              
vertex. 
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The normal vector must be geometrically transformed from local space to camera space.             
The view-model matrix can be used to transform points and directions from local space to               
camera space, however, this matrix does not guarantee the preservation of orthogonality. As             
we’ll see later we’ll need a new matrix to transform normal vectors: the normal matrix. 
 
Although the normal matrix guarantees a correct direction for the post transformed normal             
vector, the same can’t be said about its magnitude. Assuming that the normal vector              
provided by the application is unit length, the transformed vector is not guaranteed to keep               
its magnitude, so normalization of the post transformed normal vector is required in the              
general case. 

Now, lets go back to our shader. Another required uniform variable is the light direction,               
which specifies a vector pointing to the light in world space. As outputs from the vertex                
shader, besides the implicit ​gl_Position ​, we will define a single variable for the color. 
 
A possible implementation for a simple toon shader is as follows. First the vertex shader: 
 
#version 150 

 

in vec4 position; 

in vec3 normal; 

 

out vec4 colorV; 

 

uniform mat4 pvm; 

uniform mat3 normalMat; 

uniform vec3 lightDir; 

 

void main() { 

// normalise both vectors 

vec3 n = normalize(normalMat * normal); 

 

// compute the cosine using the dot operation 

float intensity = dot(n, lightDir); 

 

// compute the color based on the intensity 

if (intensity > 0.9) 

colorV = vec4(0.9); 

else if (intensity > 0.5) 

colorV = vec4(0.6); 

else if (intensity > 0.3) 

colorV = vec4(0.4); 

else 

colorV = vec4(0.0); 

 

gl_Position = pvm * position; 
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} 

 
The fragment shader is the same as in the previous example, it receives the interpolated               
colors for each fragment and outputs them. 
 
The result we get with this pair of shaders is similar to the following figure: 
 

 
 
As we can see the result is far from perfect. This is what we get when we compute colors per                    
vertex, using the Gouraud lighting model.  

 
To try to fix this we are going to move, gradually, the computations to the fragment shader.                 
We start by moving the color computation to the fragment shader, i.e. the vertex shader will                
output the intensity instead of the color. The new vertex shader is as follows: 
 
#version 150 

 

in vec4 position; 

in vec3 normal; 

 

out float intensityV; 

 

uniform mat4 pvm; 

uniform mat3 normalMat; 

uniform vec3 lightDir; 

 

void main() { 

// transform and normalise both vectors 

vec3 n = normalize(normalMat * normal); 

 

// compute the intensity using the dot operation 

intensityV = dot(n, lightDir); 

 

gl_Position = pvm * position; 

} 

 
The fragment shader receives the interpolated intensities for each fragment and computes            
the color: 
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#version 150 

 

in float intensityV; 

 

out vec4 outputF; 

 

void main() { 

vec4 color; 

// compute the color based on the intensity 

if (intensityV > 0.9) 

color = vec4(0.9); 

else if (intensityV > 0.5) 

color = vec4(0.6); 

else if (intensityV > 0.3) 

color = vec4(0.4); 

else 

color = vec4(0.0); 

 

outputF = color; 

} 

 

And the result is as shown in the next figure. As can be seen it is far better. In this latter                     
example we are interpolating the intensity instead of the discretized color.  

 
 
 
 
What would happen if we did move the intensity computation to the fragment shader as               
well? That’s what our next version of the toon shader proposes. The vertex shader is as                
follows: 
 
#version 150 

 

in vec4 position; 

in vec3 normal; 

 

out vec3 normalV; 

 

uniform mat4 pvm; 
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uniform mat3 normalMat; 

 

void main() { 

// transform and normalise normal 

normalV = normalize(normalMat * normal); 

 

gl_Position = pvm * position; 

} 

 
As can be seen the vertex shader is getting simpler. The fragment shader on the other hand                 
gets a little bit more code: 
 
#version 150 

 

in vec3 normalV; 

 

out vec4 outputF; 

 

uniform mat3 normalViewMat; 

uniform vec3 lightDir; 

 

void main() { 

 

float intensity = dot(normalV,lightDir); 

 

vec4 color; 

// compute the color based on the intensity 

if (intensity > 0.9) 

color = vec4(0.9); 

else if (intensity > 0.5) 

color = vec4(0.6); 

else if (intensity > 0.3) 

color = vec4(0.4); 

else 

color = vec4(0.0); 

 

outputF = color; 

} 

 

The result from this pair of shaders is the same as before! This is because this pair of                  
shaders performs exactly the same computations as the previous pair.  
 
However, when we look carefully at this shader we discover that there is something missing.               
The intensity is not being properly computed, since there is no guarantee that the              
interpolated normal vector is unit length. In fact, in the general case it won’t be unit length.                 
The only particular case where it will be unit length is when all normals for a face are                  
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identical. In the general case, where each vertex has a different normal, and considering              
points inside the face, the normal will have a magnitude smaller than one. 
 
So what we need to do is to normalize the normal before we compute the intensity. Instead                 
of writing 
 

float intensity = dot(normalV,lightDir); 

 
 we should write 
 

float intensity = dot(normalize(normalV),lightDir); 

 
And the result we get is as follows. As can be seen, the curvature of the highlights is                  
smoother in this image. This is the Phong Lighting model, where lighting is computed per               
fragment, with interpolated normals. 
 

 
 

Normalisation Issues 
 
As presented in the last pair of shaders, the normal vector is normalised twice: once in the                 
vertex shader, and again the interpolated vector is normalised in the fragment shader. The              
question is do we really need to perform this normalisation twice? Are there any situations               
where we can get away with just one or even no normalisations at all? 
 
First lets consider the normalisation in the vertex shader. The output vectors from the vertex               
shader are going to be interpolated. So what happens if they are not normalised? 
 

 
 

In the above figure, the interpolated vector should have a vertical direction. As can be seen,                
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the largest vector has more influence on the direction of the interpolated vector. Normalising              
is required for the interpolated vector to have the correct direction. 
 
So when can we avoid the normalisation in the vertex shader? When the transformed normal               
is unit length.  
 
We can guarantee that the normal attribute, the input of the vertex shader, is unit length. So                 
the question now becomes: when does the transformation with the normal matrix preserves             
the length of the original normal vector? The answer is: when the normal matrix is               
orthonormal, or to put it in more simpler terms, when all the operations we perform in the                 
modeling and viewing matrices are translations and rotations, i.e. no scales.  
 
Next we focus on the fragment shader. What are the properties of the interpolated normal?               
We have already seen that as long as the normals per vertex are unit length, the direction of                  
the interpolated normal is correct. But what about its magnitude? 
 

 
As can be seen from the figure, the magnitude of the interpolated vector is smaller than the                 
original vectors, both of which are unit length. The only situation where the interpolated              
normal will be unit length is when all normals have the same direction. 
 
Note that, if we had decided to transform the light direction in the vertex shader and pass the                  
interpolated vector to the fragment shader, the same reasoning does not apply. This is              
because the light direction is constant for all vertices, hence the interpolation would always              
provide the same vector.  
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