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1 Introduction 

 
Lighting is essential in computer graphics. Scenes without lighting seem too flat, making it 
hard to perceive the three dimensional shape of objects. In here we will explore the basic 
lighting and shading models.  
 
A lighting model determines how light is reflected in a particular point. The perceived colour 
on that point depends on a number of parameters, for instance, the light direction, the viewer 
direction, the properties of the material, to name a few.  
 
A shading model is related to how lighting models are used to lit a surface. For instance, we 
can compute a single colour value per triangle, Flat shading, compute the colour for the 
vertices of a triangle and interpolate the colour values for points inside the triangle, Gouraud 
shading, or even compute the colour for every surface point, Phong shading. 
 

1.1 Colours and Materials 

 
Lighting is deeply related to colour. When an object is lit we observe colour, otherwise, if no 
light reaches an object looks completely black.  
 
Colour in CG is composed of several terms, namely: 
 

● Diffuse: light reflected by an object in all directions. This is what we commonly call 
the colour of an object. 

● Ambient: used to simulate bounced lighting. It fills the areas where direct light can’t 
be found, thereby preventing those areas from becoming too dark. 

● Specular: this is light that gets reflected more strongly in a particular direction, 
commonly in the reflection of the light direction vector around the surface’s normal. 

● Emissive: the object itself emits light 
  
The next figure shows the effect the first three colour components when an object is lit. To 
define an object’s material we define values for each of the above components. 
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Figure: From left to right: ambient; diffuse; specular; diffuse + ambient + specular 
 
 
Lights come in many packages as well. The most common light types, and easier to 
implement, are: directional, point, and spot lights. 
 
In a directional light, we assume that all light rays are parallel, as if the light was placed 
infinitely far away, and distance implied no attenuation. For instance, for all practical 
purposes, for an observer in planet earth, the light that arrives from the sun is directional. 
This implies that the light direction is constant for all vertices and fragments, which makes 
this the easiest type of light to implement. 
 
Point lights spread their rays in all directions, just like an ordinary lamp, or even the sun if 
we were to model the solar system. 
 
Spotlights are point lights that only emit light in a particular set of directions. A common 
approach is to consider that the light volume is a cone, with its apex on the light’s position. 
Hence, an object will only be lit if its inside the cone. 
 

 
Figure: Lights. From left to right: directional, point, and spotlights. 

 
In the next sections we’re going to see how to write shaders to simulate all these types of 
lights. 

2 Transformations and Interpolations 

2.1 Spaces and Matrices 
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Before we start with the shaders we’re going to present the spaces and transformation 
matrices. These are fundamental concepts to fully understand the code we’re going to write 
later. 
 
The three relevant spaces for our purposes are: 
 

● Local space: the space where the models are created. 
● Global or World space: this is where we assemble our 3D scene 
● Camera space: the space where the camera is at the origin, looking down on the 

negative Z axis. 
 
To transform between these three spaces we have two 4x4 matrices: 
 

 Model matrix: to transform from local to world space; 
 View matrix: to transform from world space to camera space. 

 
For convenience we are also going to consider a matrix called viewModel which is the 
composition of the previous two matrices. 
 

𝑣𝑖𝑒𝑤𝑀𝑜𝑑𝑒𝑙 =  𝑣𝑖𝑒𝑤 ×  𝑚𝑜𝑑𝑒𝑙 
 
Both model and view matrices are commonly constructed based on translation, rotations, 
and scales. These geometric transformations represent affine transformations, i.e. a 
transformation that preserves straight lines and ratios - if three points are in a straight line, 
they will remain in a straight line after being transformed and the transformed midpoint of the 
line will still be the midpoint of the transformed line. Furthermore, while it does not 
necessarily preserve angles or lengths, two parallel lines will remain parallel after being 
transformed. 
 
The matrix form for a general affine transformation, using homogeneous coordinates is a 
matrix whose last row is[0 0 0 1]. 
 
In here, we are only going to consider affine transformations when considering 
transformations between these three spaces.  
 

2.2 Transformation between spaces 

 
To transform a point, a four element tuple (𝑥, 𝑦, 𝑧, 1), between spaces we use the above 
matrices. For instance, to transform a point 𝑃 from local to camera space we write: 
 

𝑃′ = 𝑣𝑖𝑒𝑤 ×  𝑚𝑜𝑑𝑒𝑙 ×  𝑃 = 𝑣𝑖𝑒𝑤𝑀𝑜𝑑𝑒𝑙 ×  𝑃  
 
Since we’re only considering affine transformations we know that the transformed point will 
have the general form[𝑥′, 𝑦′, 𝑧′, 1]. 
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Vectors, four element tuples of the general form [𝑥, 𝑦, 𝑧, 0], are transformed using the same 
procedure, and the transformed vector will have the general form [𝑥′, 𝑦′, 𝑧′, 0]. In particular, 
as the fourth element of a vector is zero, we get an equivalent result using only the first three 
components of the vector and the top 3x3 submatrix. 
 
The above applies to all vectors that can be expressed as a difference between two points. 
Considering such a vector, then transforming the vector is equivalent to transforming each of 
the points, and computing the transformed point difference. 
 

𝑣 = 𝑃 − 𝑃  
 

𝑣′ = 𝑀 ×  𝑣 =  𝑀 × (𝑃 − 𝑃 )  =  𝑀 ×  𝑃 − 𝑀 ×  𝑃  =  𝑃 ′ − 𝑃 ′ 
  
Normal vectors are a particular case, as they cannot be expressed in this way. A normal 
vector is a vector that has constant magnitude, 1, and a direction which is defined not as the 
difference between two points, but as a direction which is perpendicular to a surface. 
 
Hence, to transform the normal vector we must use a matrix that transforms normals from 
local space to camera space, preserving the property of being perpendicular to the 
transformed surface. So how do we compute such a matrix? 
 
Consider the following vectors in the image below. 
 
 

 
 
 
On the left is the original triangle and a normal vector to the edge. On the right we have the 
transformed figure where all points and vectors have been transformed with a scale (1,2,1). 
 
Vector 𝑇 is tangent to the triangle edge, and can be defined as 
 

𝑇 =  𝑃 − 𝑃  
 
As shown above, the transformation of 𝑇 is equivalent to the difference of the transformed 
points, i.e. 
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𝑇 =  𝑣𝑖𝑒𝑤𝑀𝑜𝑑𝑒𝑙 × 𝑇 = 𝑣𝑖𝑒𝑤𝑀𝑜𝑑𝑒𝑙 × (𝑃′ − 𝑃′ ) 
 
Hence, the transformed vector 𝑇′  remains tangent to the edge. On the other hand, the 
transformed normal vector is no longer perpendicular to the edge. 
 
As mentioned before, when transforming vectors we can consider only the first three 
components of the vector, and the top 3x3 sub matrix. We need another matrix to transform 
vector 𝑁. A matrix that guarantees that after being transformed, 𝑁′ remains perpendicular to 
𝑇. This matrix is called a normal matrix. Let’s call this 3x3 matrix 𝐺 and let’s call the 3x3 
matrix that transforms 𝑇 as 𝑀.  
 
We know that after transforming both vectors they must remain perpendicular, hence, their 
dot product must be zero. Hence 
 

𝑇 ∙ 𝐺 =  (𝑀𝑇) ⋅ (𝐺𝑁) = 0 
 
Rewriting the dot product as a matrix product we have 
 

(𝑀𝑇) × (𝐺𝑁)  = 𝑇  ×  𝑀  ×  𝐺 ×  𝑁 
 
If we assume that 
 

𝑀 ×  𝐺 =  𝐼 
 
Then 
 

𝑇  ×  𝑀  ×  𝐺 ×  𝑁 = 𝑇  × 𝐼 ×  𝑁 = 𝑇 × 𝑁 = 𝑇 ⋅ 𝑁 =  0 
 
Which we know must be true. So we know the relation between 𝐺 and 𝑀 is: 
 

𝑀  ×  𝐺 =  𝐼 
 
Therefore, multiplying by the inverse of the transpose of 𝑀 on both sides we get 
 

(𝑀 )  × 𝑀  ×  𝐺 =  (𝑀 )  
𝐺 =  (𝑀 )  

 
Therefore, the normal matrix, matrix 𝐺, must the the inverse of the transpose of 𝑀, i.e. the 
inverse of the transpose of the top 3x3 sub matrix of the 4x4 matrix used to transform points.  
 
So, is there any situation where 𝐺 = 𝑀? Yes, when matrix 𝑀 is orthogonal. A matrix is said to 
be orthogonal if 
 

𝐴 × 𝐴  =  𝐼 
 
or  
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𝐴  =  𝐴  
 
If 𝑀 is orthogonal then 
 

𝐺 = 𝑀 
 
Therefore, this property can avoid us any computational effort to compute the normal matrix. 
 
An orthogonal matrix has all rows (columns) as unit length, and these are mutually 
perpendicular. Starting from an orthogonal matrix, such as the identity matrix, the geometric 
transformations for rotations and translations preserve these properties. The same does not 
apply to scales, which change the magnitude of the row (column) vectors of the matrix.  
 
Therefore, if we use only rotations and translations we guarantee that our matrices are 
always orthogonal, and we can transform all vectors, including normals, with the same 
matrix.  
 
To ensure that the shaders that will be presented in this chapter can handle scales, we are 
going to assume that the application shall provide the shaders with the normal matrix (3x3) 
to transform normal vectors (1x3), and regular matrices (4x4) to transform all other vectors 
(4x1) and points. 
 
It is important to stress that in order to perform operations with multiple vectors, these must 
be in the same space. There are typically many spaces where we can work on. Local space, 
world space, and camera space, are the most common. Regarding lighting, we can define 
the light’s direction (and other properties) in any of these spaces. When we define a light in 
local, or model, space, it works as if the light is attached to the object, like the light bulb in a 
desk lamp, as in Luxo Jr. from Pixar. Defining a light in world space works as if the light is 
fixed in the 3D world we are building, regardless of the camera or any object. Working with 
lights in camera space means that the light is defined relatively to the camera (which in this 
space is placed at the origin, looking down on the negative Z axis). Whenever the camera 
moves, the light follows. A miner’s helmet lamp, fixed to the helmet, is an example of such 
light, if we consider the eyes of the miner to be the camera. 

3 Directional Lights 

We are going to consider two situations regarding the distribution of the computation 
amongst the shaders (vertex and fragment): Initially we are going to write as much of the 
computation as possible in the vertex shader, and then we’ll reverse the situation. This has 
major implications in the rendering quality. 
 
When rendering an object we need uniform variables to define the light and the material. A 
directional light is defined solely by its direction, hence a vec4 is sufficient. We could also 
define a colour for the light, but as this does not bring any added value to the examples 
presented next, we’re going to assume the light is white, as in (1.0, 1.0, 1.0, 1.0).  
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Regarding the material, we are going to start with the diffuse component, and gradually we’ll 
add the other components. 
 
In this first version, we are going to define the following uniforms: the light direction (vec4) 

and the diffuse component of the object’s material (vec4). 
 
To compute the intensity of the reflected light, assuming a Lambertian 
diffuse reflection model, we compute the cosine between the vector 
pointing towards the light and the normal vector. Hence, we can 
compute the dot product between these two vectors, assuming that the 
vectors are normalised and they are defined in the same space. The 
result of the dot product then gets multiplied by the diffuse component of 
the object’s material, 𝐾 . The lighting equation is: 
 

𝐼 =  𝐾  × 𝑐𝑜𝑠(𝛼) = 𝐾 × (𝑁 ⋅ 𝐿) 
 
 
For shaders to work with multiple lights, potentially in multiple spaces, it makes life easier for 
the shader programmer to assume that all the lights are defined in the same space. World 
space is a common option. 
 
Hence, we either transform the light properties, such as direction and position, in the 
application and send these values in the common space to the shader, or we’ll have to 
consider where the light has been defined and transform those properties accordingly. 
 
Assuming that we’re going to work in Camera space, the normals must be transformed from 
local space to camera space. As mentioned before we are going to use the normal matrix for 
this purpose.  
 
In here we are going to assume that the all the light’s data fed to the shader is in world 
space. This implies that the vector representing the light’s direction (actually the vector that 
points to the light) must be transformed by the view matrix.  
 
In all shaders, the matrix pvm (mat4) stands for a matrix that is computed as the 
multiplication of the projection, view, and model matrices. The normal matrix is referred to as 
normal (mat3), and the view matrix as view (mat4). 
 
In our first solution we’re going to compute a colour, or reflected intensity, per vertex, using 
the above equation. 
 
The shader must receive as inputs the position and normals of each vertex, and output the 
computed colour. We also need the above mentioned matrices and the direction towards the 
light, lightDir (vec4), and the diffuse colour of the material, diffuse (vec4). 
 
Although it may look excessive in this first example, we’re going to use uniform blocks for 
both matrices, material, and light properties as these will help to keep the code clean later 
on. 
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We are also going to use blocks for intershader communication. 
 
Vertex Shader 
 
#version 330 
 
layout (std140) uniform Matrices { 
 mat4 pvm; 
 mat4 viewModel; 
 mat4 view; 
 mat3 normal; 
} Matrix; 
 
layout (std140) uniform Materials { 
 vec4 diffuse; 
 vec4 ambient; 
 vec4 specular; 
 vec4 emissive; 
 float shininess; 
 int texCount; 
} Material; 
 
layout (std140) uniform Lights { 
 vec4 dir; // world space 
} Light; 
 
in vec4 position; // local space 
in vec3 normal; // local space 
 
out Data { 
 vec4 color; 
} DataOut; 
 
 
void main () { 
 // transform both vectors to camera space 
 // and normalize them 
 vec3 n = normalize(Matrix.normal * normal); 
 vec3 l = normalize(vec3(Matrix.view * Light.dir)); 
 
 // compute the intensity as the dot product 
 // the max prevents negative intensity values 

float intensity = max(dot(n, l), 0.0); 
 
 DataOut.color = intensity * Material.diffuse; 
 
 gl_Position = Matrix.pvm * position;  
} 
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The fragment shader has a very simple job: receiving the color computed in the vertex 
shader and outputting it. 
 
 
Fragment Shader 
 
#version 330 
 
in Data { 
 vec4 color; 
} DataIn; 
 
out vec4 colorOut; 
 
void main() { 
 
 colorOut = vec4(DataIn.color); 
} 
 
 
The result using the above shaders is presented in following figure. The lit surfaces look 
nicely curved, but the surfaces facing away from the light are completely dark.  
 

 
Figure: Directional light and diffuse material 

 

3.1 Let’s add the ambient component.  

 
The ambient term is a constant that is added to the previously computed color. It prevents 
unlit areas from becoming too dark. The new lighting equation is as follows: 
 
𝐼 = 𝐾 × 𝑐𝑜𝑠(𝛼)  +  𝐾  
 
The vertex shader needs a new uniform variable, in the Materials block,  to hold the 
ambient term. The new block looks is as follows: 
 
layout (std140) uniform Materials { 
 vec4 diffuse; 
 vec4 ambient; 
} Material; 
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As for the main function, there is only a small change, the color computation:  
 

DataOut.color = intensity * Material.diffuse + Material.ambient; 
 
The result is as presented in the next figure, considering a diffuse term of (0.6, 0.8, 0.6), and 
an ambient term of (0.2, 0.266, 0.2). 
 

 
Figure: Directional light with diffuse and ambient components 

 
Actually, looking at both the diffuse and ambient terms, we can see that the ambient term 
could be computed as ⅓ of the diffuse term. Hence, if this is the case, instead of adding a 
new variable to the computation of the color we could have written: 
 

DataOut.color = (intensity + 0.33) * Material.diffuse; 
 
In some models this might cause the model to become too bright, as the ambient term is 
also being added to lit areas. A possible work around, which actually makes more sense, is 
to consider the ambient component as a minimum lighting intensity: 
 
 DataOut.color = max(intensity * Material.diffuse, Material.ambient); 
 
or, when considering the ambient term as a scaled down diffuse term: 
 
 DataOut.color = max(intensity * Material.diffuse,  

0.25 * Material.diffuse); 
 
Of course, there is always the possibility of adjusting the color terms themselves, but when 
considering a large number of models a programmable approach might be preferable. 
 
 

3.2 Adding the specular term 

 
When we consider shiny materials we see that there is a bright spot, most of the times in a 
colour different from the diffuse colour. For instance an apple may be green, but the bright 
spot is white. This bright spot varies in size, being more sharp in metallic objects, and more 
diffuse in plastics. The position and intensity of the bright spot varies with the position of the 
observer. 
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The intensity of the reflected specular light is at its maximum in the direction of the reflection 
of L around N. The reflection vector can be computed as in the following diagram: 
 

 
Figure: Computing the reflection vector 

 
We know that |𝐿| is one, and 𝑐𝑜𝑠(𝛼) is simply the dot product between L and N. Going from 
the end of -L to the end of R one needs to go in the N’s direction, with a magnitude twice of 
|𝐿| 𝑐𝑜𝑠(𝛼). The equation to compute R, according to the diagram in the figure above is as 
follows: 
 

𝑅 = −𝐿 +  2(𝑁. 𝐿)𝑁 
 
The intensity of the bright spot will have its maximum magnitude when the camera vector is 
aligned with the reflection vector. As the camera vector moves away from the reflected 
vector, the intensity of the bright spot will become dimmer.  
 
Phong proposed that the intensity of the bright spot be computed as the cosine of the angle 
between the reflection vector and the eye vector, as depicted in the next figure. 
 
 
 

 
Figure: Specular lighting 

 
Phong’s specular term captures this phenomenon in the following equation: 
 

𝐼 = 𝐾 × 𝑐𝑜𝑠(𝛽) 
 
Blinn later proposed an alternative to the Phong equation using the half-vector. The half-
vector is the vector that its half way between the light vector and the eye vector. The vectors 
are depicted in the following figure.  
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Figure: Half-Vector 

 
The half-vector, H, is computed as 
 

𝐻 =  𝐿 + 𝐸𝑦𝑒 
 
The cosine between the vector H and the normal vector, N, provides an alternative Phongs 
original idea. Note that to use the dot product to compute the cosine the vector 𝐻must have 
been normalized previously. The equation with the half-vector is called the Blinn-Phong 
equation. 
 

𝐼 = 𝐾 × 𝑐𝑜𝑠(𝑁, 𝐻) 
 
However applying this equation directly can cause the specular light to flood the scene, 
washing away all the other colors, as shown in the next figure:. 

 
Figure: Applying the specular term 

 
To solve this we’re going to add another term, called shininess, to control the specular term. 
The equation with this new term, s, is as follows: 
 

𝐼 = 𝐾 × 𝑐𝑜𝑠(𝑁, 𝐻)  
 
The result of adding the shininess term can be observed in the following figure. For s = 1, we 
have the cosine curve. As s grows bigger, the curve gets steeper, essentially providing non 
zero values for the specular term in smaller and smaller intervals. On the other hand, if s 
goes below 1, then the curve gets wider, hence the specular term will affect almost all points. 
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Figure 8. Applying the shininess term 

 
Getting back to our teapot, when s = 100 we get the following result: 

 
Figure: Teapot with specular term and shininess set to 100 

 
Now, let’s see how to implement this. We need two more uniforms in our Materials block, 
the specular color, and the shininess term.  
 
Inside the main function we have to compute the eye vector, and the half-vector. To compute 
the eye vector we have to transform the vertex’s position with the View Model matrix 
(viewModel in the shader) to define it in Camera space. 
 
Then, we compute the dot product between the normalized half-vector and the normal to 
determine the specular intensity. We use the power function with the specular intensity and 
the shininess term, and finally multiply it by the specular color. The specular color is then 
added to the final color. 
 
The following vertex shader implements these concepts: 
 
#version 330 
 
layout (std140) uniform Matrices { 
 mat4 pvm; 
 mat4 viewModel; 
 mat3 view; 
 mat3 normal; 
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} Matrix; 
 
layout (std140) uniform Materials { 
 vec4 diffuse; 
 vec4 ambient; 
 vec4 specular; 
 float shininess; 
} Material; 
 
layout (std140) uniform Lights { 
 vec4 dir; // world space 
} Light; 
 
in vec4 position; // local space 
in vec3 normal; // local space 
 
out Data { 
 vec4 color; 
} DataOut; 
 
 
void main () { 
  
 vec4 spec = vec4(0.0); 
 vec3 n = normalize(Matrix.normal * normal);    
 vec3 l = normalize(vec3(Matrix.view * Light.dir));     
 float intensity = max(dot(n, l), 0.0); 
 
 if (intensity > 0.0) { 
  vec3 pos = vec3(Matrix.viewModel * position);  
  vec3 eye = normalize(-pos); 
  vec3 h = normalize(l + eye); 
 
  float intSpec = max(dot(h,n), 0.0); 
  spec = Material.specular * pow(intSpec, Material.shininess); 
 } 
 
 DataOut.color = max(intensity *  Material.diffuse + spec, 

 Material.ambient); 
 
 gl_Position = Matrix.pvm * position;  
} 
 
 
This implementation provides an implementation of the Blinn-Phong equation per vertex, 
with fragments getting interpolated colors. This corresponds to the Gouraud lighting 
model.  
 
This model has some drawbacks, since interpolating colors is not the correct way of 
obtaining the colors per fragment as seen in the toon shader example. 
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3.3 Lighting per Pixel 

 
Next, we’re going to modify our example to use Phong lighting model, i.e. we are going to 
compute the color per fragment. This implies moving most of the operations from the vertex 
shader to the fragment shader. The vertex shader limits itself to prepare the data for the 
computations that will take place in the fragment shader. 
 
The fragment shader will need the following data per fragment: 
 

● normal 
● light direction: vector towards the light 
● eye vector: vector from the point to the eye 

 
The vertex shader must compute these vectors per vertex, so that they get interpolated and 
passed on to the fragment shader. 
 
The new vertex shader is: 
 
#version 330 
 
layout (std140) uniform Matrices { 
 mat4 pvm; 
 mat4 viewModel; 
 mat4 view; 
 mat3 normal; 
} Matrix; 
 
layout (std140) uniform Lights { 
 vec4 dir; 
} Light; 
 
in vec4 position; 
in vec3 normal; 
 
out Data { // all computed in camera space 
 vec3 normal; 
 vec3 eye; 
 vec3 lightDir; 
} DataOut; 
 
void main () { 
  
 DataOut.normal = normalize(Matrix.normal * normal); 
 DataOut.lightDir =  vec3(Matrix.view * Light.dir); 

DataOut.eye = -vec3(Matrix.viewModel * position); 
 
 gl_Position = Matrix.pvm * position;  



16 

} 
 
 
The fragment shader receives the interpolated vectors and performs the remaining 
computations, as follows: 
 
#version 420 
 
layout (std140) uniform Materials { 
 vec4 diffuse; 
 vec4 ambient; 
 vec4 specular; 
 float shininess; 
} Material; 
 
in Data { 
 vec3 normal; 
 vec3 eye; 
 vec3 lightDir; 
} DataIn; 
 
out vec4 colorOut; 
 
void main() { 
 
 vec4 spec = vec4(0.0); 
 
 vec3 n = normalize(DataIn.normal); 
 vec3 l = normalize(DataIn.lightDir); 
 vec3 e = normalize(DataIn.eye); 
 
 float intensity = max(dot(n,l), 0.0); 
 
 if (intensity > 0.0) { 
  vec3 h = normalize(l + e);  
  float intSpec = max(dot(h,n), 0.0); 
  spec = Material.specular * pow(intSpec,Material.shininess); 
 } 
 colorOut = max(intensity *  Material.diffuse + spec, 

 Material.ambient);  
} 
 
 
The following figure shows the difference between the Gouraud and Phong lighting models. 
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Figure: Gouraud (left) and Phong (right) 
 

4 Point Lights 

 
When considering point lights, the main difference is that now we have a position for the light 
instead of a direction. This implies that the light direction is not constant across all 
fragments/vertices as it was for direction lights. Besides that, everything remains just like for 
directional lights. 
 
The vertex shader now receives a light position instead of a light direction, and it must 
compute the light’s direction for each vertex. It is assumed that the light’s position is in world 
space. Once we move both the light position and vertex position to the same space, the 
direction computation is straightforward: light position - vertex position.  
 
If both these positions were in camera space, the resulting vector would also be in camera 
space which is what we want since most of our computations are in camera space. To 
achieve this we must apply the View Model matrix (viewModel in the shader) to the vertex 

position, and the View Matrix (view in the shader) to the light’s position. 
 
Vertex Shader 
 
#version 330 
 
layout (std140) uniform Matrices { 
 mat4 pvm; 
 mat4 viewModel; 
 mat4 view; 
 mat3 normal; 
} Matrix; 
 
layout (std140) uniform Lights { 
 vec4 pos; 
} Light; 
 
in vec4 position; 
in vec3 normal; 
 
out Data { 
 vec3 normal; 
 vec3 eye; 
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 vec3 lightDir; 
} DataOut; 
 
void main () { 
 
 vec4 pos = Matrix.viewModel * position; 
 vec4 lpos = Matrix.view * Light.pos; 
 
 DataOut.normal = normalize(Matrix.normal * normal); 
 DataOut.lightDir = vec3(lpos-pos); 
 DataOut.eye = vec3(-pos); 
 
 gl_Position = Matrix.pvm * position;  
} 
 
 
Since the light direction is computed in the vertex shader, and it is then interpolated, the 
fragment shader is identical to the directional light case.  
 
 
 
 

 
Figure: a point light placed above the center teapot. 

 
 

5 Spotlights 

 
Spotlights are restricted point lights, i.e. the light rays are only emitted in a restricted set of 
directions. Commonly we use a cone to define this restriction, but other shapes are possible. 
 
Considering the cone as an option to restrict the light rays, we need the following data to 
define a spot light: 
 

● position: this is the cone’s apex 
● direction: the vector that defines the direction of the axis of the cone 
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● cutoff: the aperture of the cone. In here we are going to assume that the angle is 
measured from the direction vector to the border of the cone. The cutoff can be 
expressed as the cosine of the angle for computationally efficiency purposes. 
 

The vertex shader is the same as for the point light. It is up to the fragment shader to 
determine if a fragment is inside the cone, i.e. the dot product between the light’s direction 
and the spot’s direction is less than the cutoff value, and lit it accordingly. 
 
 
Fragment Shader 
 
#version 150 
 
uniform vec3 diffuse; 
uniform vec3 specular; 
uniform vec3 spotDir; 
uniform float cutOffAngle; 
 
in vec3 normalV; 
in vec3 eyeV; 
in vec3 lightDirV; 
 
out vec3 colorOut; 
 
void main() { 
 
 vec3 sd = normalize(-spotDir); 
 vec3 ld = normalize(lightDirV); 
 vec3 n = normalize(normalV); 
 vec3 e = normalize(eyeV); 
 
 // is pixel world position inside the cone 
 if (acos(dot(sd, ld)) < cutOffAngle) { 
 
  float intensity = max(dot(n,ld), 0.0); 
  vec3 h = normalize(ld + e); 
  float intSpec = max(dot(h,n), 0.0); 
  colorOut = (intensity + 0.33) * diffuse  +  

specular * pow(intSpec,100); 
 } 
 else 
  colorOut = 0.33 * diffuse; 
} 
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Figure: Spotlight in teapot 

 
Two notes regarding the implementation. First, we used -spotDir because lightDir is also 
reversed, i.e. it is not the vector with a direction from the light source to the point being lit, 
but the reverse. Secondly, we could have save ourselves the cost of computing the  arc of 
the cosine, if we assumed that the spotlight’s aperture is specified as a cosine, instead of an 
angle (in radians). The user can still specified it as an angle, but it would be up to the 
application to compute the cosine before feeding the value to the shader. 
 
 


