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Introduction

Up until now we have been rendering everything with a single set of shaders. The geometry was
fed to the graphics pipeline and, on the other end, an image was produced as output. However,
not all situations can be solved with a single pass, shadows being the most common example.
On the other hand, there may be some scenarios where rendering is more efficient when using
multiple passes.

Lets consider a simple example: rendering a lit object. The shaders in the lighting section are
able to simulate lighting on an object using a single pass. The fragment shader will be executed
each time a pixel passes the depth test, potentially causing it to be executed many more times
than the number of pixels available. How many more pixels is a quantity that is scene
dependent as well as camera position dependent. A sorting mechanism could be used to
reduce overdrawing, but it will always be present.

If the lighting fragment shader is a heavy shader from a performance point of view, then
overdrawing could cause the application to slow down. In these situations an approach called
deferred rendering can help us to get performance back on track. As mentioned, this is not a
solution for all problems, and it can cause a performance decrease when there is little to no
overdraw, or when the pixel operations are very simple, so use this with care.

The main goal of this approach is to divide the rendering process in two (or more) steps. In the
first step, where all the geometry is present, hence overdraw is likely to occur, we only store the
required information to be able to compute the illumination per pixel. In this first step we don’t
perform any complex computation, we just store values. For instance to compute Phong’s
lighting model we need to know several pieces of information, namely the light’s direction, the
eye vector ( a vector pointing from the camera to the point, in camera space), and the normal.
All these vectors must be in camera space.

So the first step will just save these three vertices in textures. Then the second step will receive
as input those three textures and create the final rendered object.
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Figure. Inputs and outputs of step 1

The next step will draw a single plane. It will receive the three previously created textures as
inputs and it will output the final image on screen.
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Figure. Inputs and outputs of step 2

OpenGL Setup

Regarding the OpenGL side of the application, there is some work that needs to be done as far
as setup goes.

OpenGL renders always to a frame buffer, which by default is the same as rendering to screen.
A frame buffer is a set of buffers we can write to. For instance in the default frame buffer we
commonly write to a color buffer, and implicitly to a depth buffer.

The API lets us define our own frame buffer, where we can include the set of buffers we require
for our application. In the example above we would need a depth buffer and three colour
buffers. So lets see how to define a frame buffer that suits our needs.

Frame buffers behave very much as any other object in OpenGL. To set them up, we have to
generate them, bind them, add information to them, and unbind them at the end. This last step
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is optional, but it is a good practice.
The following snippet of code takes care of the initial stages:
GLuint fbo;

// Generate one frame buffer
glGenFramebuffers(l, &fbo);

// bind it
glBindFramebuffer (GL FRAMEBUFFER, fbo);

After the frame buffer is created, and bound, we need to add render targets. A frame buffer can
have a depth buffer, a stencil buffer, and a number of colour buffers. These targets come in two
shapes: textures or render buffers. While some claim that render buffers may be further
optimized by the driver, textures provide more flexibility, as a texture can work both as output,
from a frame buffer, and input, as a regular texture.

In here we are going to use textures for the colour buffers, since we want to feed them to the
next step, and a render buffer will be used to store the depths.

The following function creates empty textures. i.e. textures that have no initial data stored in
them.

GLuint createRGBATexture (int w, int h) {
GLulnt tex;

glGenTextures (1, &tex);
glBindTexture (GL TEXTURE 2D, tex);

glTexParameteri (GL_TEXTURE 2D,GL_ TEXTURE MAG FILTER,
GL_LINEAR) ;

glTexParameteri (GL_TEXTURE 2D,GL_TEXTURE MIN FILTER,
GL_LINEAR) ;

glTexParameteri (GL TEXTURE 2D, GL TEXTURE WRAP S, GL_REPEAT);

glTexParameteri (GL TEXTURE 2D, GL TEXTURE WRAP T, GL REPEAT);

glTexImage2D (GL TEXTURE 2D, 0, GL RGBA, w,h,
0, GL RGBA, GL FLOAT,
NULL) ;

ngindTexture(GL_TEXTURE_ZD, 0);
return (tex) ;



To add a texture, using its texture ID, to a frame buffer we can use the
glFramebufferTexture function. For instance to add a texture for the first color target we
could write:

tex = createRGBATexture (w,h);
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENTO, tex, 0);

The second parameter specifies the attachment we’re making. Allowed values are
GL COLOR ATTACHMENTIi, GL DEPTH ATTACHMENT, GL STENCIL ATTACHMENT or
GL DEPTH STENCIL ATTACHMMENT. The third parameter is the texture ID, and the last the
mipmap level.

Render buffers need to be created, bound and initialized, as do all types of buffers in OpenGL.
Then we specify its storage type and dimensions with glRenderbufferStorage. For
instance, the following code creates a render buffer that can be used to store 24 bit depth
components.

GLuint fb;
glGenRenderbuffers(l, &fb);
glBindRenderbuffer (GL RENDERBUFFER, fb);
glRenderbufferStorage (GL RENDERBUFFER, GL DEPTH COMPONENT24, w, h);
Finally we attach the render buffer to the bound frame buffer, for instance,
glFramebufferRenderbuffer (GL FRAMEBUFFER,

GL DEPTH ATTACHMENT,

GL RENDERBUFFER, fb);
To check if everything is OK we can call
GLenum e = glCheckFramebufferStatus (GL DRAW FRAMEBUFFER) ;

and ife == GL FRAMEBUFFER COMPLETE we can move on to the next stage.

The following function creates a frame buffer with n textures as color attachments and a render
buffer to store the depths. It assumes that fbo, and texFBO are constants defined as follows:

GLuint fbo, texFBO[n];

This function should be called in the setup phase of the application. It takes as parameters the
size of the frame buffer (it is not required that this size is the same as the windows size), and the
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number of colour attachments.
void prepareFBO (int w, int h, int colorCount) {

// Generate one frame buffer
glGenFramebuffers(l, &fbo);

// bind it
glBindFramebuffer (GL DRAW FRAMEBUFFER, fbo);
// attach textures for colors

for (int 1 = 0; 1 < colorCount; ++1) {

texFBO[1] = createRGBATexture (w,h);
glFramebufferTexture (GL FRAMEBUFFER,
GL COLOR_ ATTACHMENTO+i, texFBO[i], O0);
}
// attach renderbuffer for depth
GLuint fb;
glGenRenderbuffers(l, &fb);
glBindRenderbuffer (GL RENDERBUFFER, fDb);
glRenderbufferStorage (GL RENDERBUFFER,
GL DEPTH COMPONENT24, w,h);
glFramebufferRenderbuffer (GL FRAMEBUFFER,
GL DEPTH ATTACHMENT,
GL RENDERBUFFER, fb);

// check if everything is OK
GLenum e = glCheckFramebufferStatus (GL DRAW FRAMEBUFFER) ;
if (e != GL FRAMEBUFFER COMPLETE) {
printf ("There is a problem with the FBO\n");
}
// unbind fbo
glBindFramebuffer (GL DRAW FRAMEBUFFER, O0);

Now, in the shader setup, for step 1, we have to bind the outputs in the fragment shader.
glBindFragDatalocation (pPrograml, 0,"coutO");
glBindFragDatalLocation (pPrograml, 1,"coutl");
glBindFragDatalocation (pPrograml, 2,"cout2");

where pPrograml is the GLSL program for step 1, or, using VSL,

steplShader.setProgramOutput (0, "cout0") ;



steplShader.setProgramOutput (1, "coutl") ;
steplShader.setProgramOutput (2, "cout2") ;

where steplShader is the shader object in VSL.

We also have to bind the three texture samplers to step 2 shader, which, using VSL, we could
do as follows:

step2Shader.setUniform("normalTex", 0);
step2Shader.setUniform("lightDirTex", 1);
step2Shader.setUniform("eyeVectorTex", 2);

The names that appear in the function calls above must be the names of the samplers in the
shaders.

OpenGL Rendering Cycle

The rendering cycle requires that we define the two steps. For each step we must bind the
appropriate frame buffer, set the viewport (if using different viewports on different steps), define
the drawing buffers, and then draw as usual.

In the above example we have a first step which is a normal rendering, with a camera setup,
and matrices involved, and a second step which is only drawing a plane.

Note that setting the matrices in each step is only strictly required if the shaders use those
matrices, otherwise this step can be saved in the release version. By setting the matrices in
every step we are basically staying on the safe side against future shader changes.

The rendering cycle could be written as follows:

// PASS 1
// Bind FPO
glBindFramebuffer (GL FRAMEBUFFER, fbo);

// Set Drawing buffers

GLuint attachments[3] = { GL COLOR ATTACHMENTO,
GL_COLOR_ATTACHMENTl,
GL COLOR ATTACHMENTZ2};

glDrawBuffers (3, attachments) ;

// clear color and depth



glClear (GL_COLOR_BUFFER BIT | GL DEPTH BUFFER BIT);

// use step 1 shader
glUseProgram(steplShader.getProgramIndex()) ;

// Load identity matrices
vsml->loadIdentity (VSMathLib: :VIEW) ;
vsml->loadIdentity (VSMathLib: :MODEL) ;

// this is the resolution of the render target
glviewport (0, 0, FBO WIDTH,FBO HEIGHT) ;

// set camera

vsml->1lookAt (camX, cam¥, camz, 0,0,0, 0,1,0);

// pass light position in camera space to shader
float 1[4] = {1.0, 1.0, 1.0, 0.0};

float 1Trans[4];

vsml->multMatrixPoint (VSMathLib::VIEW, 1, 1Trans);
steplShader.setUniform("lightDir", 1lTrans);

// render model
myModel.render () ;

// PASS 2

// get back to the default frame buffer, i.e. output to the screen
glBindFramebuffer (GL FRAMEBUFFER, O0);

// use shader for step 2
glUseProgram(step2Shader.getProgramIndex()) ;

// clear default frame buffer

glClear (GL_COLOR BUFFER BIT | GL_DEPTH BUFFER_BIT);

// load identity matrices
vsml->loadIdentity (VSMathLib: :MODEL) ;
vsml->loadIdentity (VSMathLib: :VIEW) ;

// save projection matrix
vsml->pushMatrix (VSMathLib: : PROJECTION) ;
vsml->loadIdentity (VSMathLib: :PROJECTION) ;

glviewport (0, 0, WINDOW WIDTH, WINDOW HEIGHT) ;
// render plane

vsml->rotate (90, 1.0, 0.0, 0.0);
plane.render () ;



vsml->popMatrix (VSMathLib: : PROJECTION) ;

Shaders

All that is left are the shaders themselves. For step 1 we only need to store the info, hence the
shaders are very simple:

Vertex Shader
#version 420

uniform mat4 pvm;

uniform vec3 lightDir;

in vec4 position;
in vec3 normal;

out vec3 normalV, eyeV, lightDirV;
void main () {

normalV = normalize( normalMatrix * normal) ;
lightDirV = normalize (lightDir);

eyeV = -normalize (vec3 (modelViewMatrix * position));
gl Position = pvm * position;

}

Fragment Shader

#version 420

in vec3 normalV, eyeV, lightDirV;

out vecd4d coutO, coutl, cout2;

void main () {
cout0 = vecd (normalize (normalvVv) * 0.5 + 0.5, 0.0);
coutl = vec4 (lightDirv * 0.5 + 0.5, 0.0);
cout?2 = vecd (normalize(eyeV) * 0.5 + 0.5, 0.0);



In step 2, the vertex shader passes the texture coordinates to the fragment shader, which uses
them to retrieve the saved data. After this step, the fragment shader proceeds to compute the
pixel colour, which in this example is simply Phong lighting.

Vertex Shader

#version 420

uniform mat4 modelMatrix;

in vec4 position;
in vec2 texCoord;

out vec?2 texCoordV;
void main () {

texCoordV = texCoord;

gl Position = modelMatrix * position;
Fragment Shader

#version 420

uniform vecd4 diffuse, specular;
uniform sampler2D normalTex, lightDirTex, eyeVectorTex;

in vec2 texCoordV;
out wvecd cout;
void main () {

vecd dif, spec;
vec3 n, 1, h, e;

= texture (normalTex, texCoordV).rgb * 2.0 - 1.0 ;
e =texture (eyeVectorTex, texCoordV).rgb * 2.0 - 1.0 ;
1 = texture(lightDirTex, texCoordV) .rgb ;

float intensity = max(dot(n, 1), 0.0);



h = normalize(l + e);

float intSpec = max(dot(h,n), 0.0);
spec = specular * pow(intSpec,100);
dif = diffuse ;

cout = (intensity + 0.2) * dif + spec

.
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