
Texturing with GLSL
Notes for a Msc Course in Computer Graphics

University of Minho
António Ramires

Introduction

Texturing is a feature that opens many doors when considering computer graphics. Textures
are not necessarily images. Although that representation is the most easily observable, they can
also be seen as an array of data.

In this document we will cover the basics of texturing in GLSL.

It is assumed that the reader is familiar with the concept of texturing, and understands the
process of defining texture coordinates for a 3D model. Most 3D models are created with texture
coordinates, so when importing a model, chances are that the texture coordinates are already
defined.

Texture Coordinates

The first step is making the textures coordinates available to our shaders. Texture coordinates
are just another vertex attribute, much like normals. Hence in the application we need to treat
them as such, i.e. we need to add a buffer with the texture coordinates to the vertex array object
that contains all the other models attributes.

In the vertex shader we shall receive the texture coordinates as inputs, and commonly we
simply copy them to an output variable. this variable will be received as input in the fragment
shader, where we can use it for the purpose of our application.

The code below simply illustrates the process described above:

Vertex Shader
#version 330

uniform mat4 pvm;

1

in vec4 position;
in vec2 texCoord;

out vec2 texCoordV;

void main() {

texCoordV = texCoord;
gl_Position = pvm * position;

}

Fragment Shader
#version 330

in vec2 texCoordV;

out vec4 colorOut;

void main() {

colorOut = vec4(texCoord, 0.0, 0.0);
}

The output of these shaders displays texture coordinates as colors, showing how the texture
mapping is defined in a model. For instance, the figure below shows a plane, an elephant, and
the teapot, with their texture coordinates. Red will be used for the s coordinate, and green for
the t coordinate.

Figure. Drawing texture coordinates as colors

Playing with texture coordinates

In here it will be shown how texture coordinates per se can be used to color a model. For
instance, assume that we want to obtain a grid effect as shown in the image below:

2

Figure. Grid teapot

To achieve the above we are only painting certain pixels (in blue) and discarding the remaining
pixels with the GLSL keyword discard . The density of the grid is defined by a multiplication
factor applied to the texture coordinates. The fragment shader then selects only those pixels
that have one of the texture coordinates with a fractional value below 0.1, colouring these with
blue. This last value, 0.1, controls the width of the lines drawn.

The vertex shader is the same as above, only the fragment shader needs to be rewritten as
follows:

#version 330

in vec2 texCoordV;
out vec4 colorOut;

void main() {

// different constants will yield different grid densities
vec2 t = texCoordV * 8.0;

// the constant (0.1) defines the with of the lines
if (fract(t.s) < 0.1 || fract(t.t) < 0.1)

colorOut = vec4(0.0, 0.0, 1.0, 1.0);
else

discard;
}

A teapot in stripes can be obtained with a similar approach. In this case we can attribute a
colour to pixels with the fractional part of a texture coordinate, for instance t , lower than 0.5, and
another color to pixels with the same fractional coordinate larger than 0.5.

The shader could be as follows:

#version 330

3

uniform vec4 color1 = vec4(0.0, 0.0, 1.0, 1.0);
uniform vec4 color2 = vec4(1.0, 1.0, 0.5, 1.0);

in vec2 texCoordV;
out vec4 colorOut;

void main() {

vec2 t = texCoordV * 8.0;
if (fract(t.s) < 0.5)

colorOut = color1;
else

colorOut = color2;
}

The result, when applied to the teapot, will be:

Figure. Stripes in a teapot

As can be seen, the result is severely aliased. This is because the coloring function we are
using is a step function. To fix this we can use a function with smoother transitions as depicted
in the figure below:

Figure. Left: step function. Right: smoother function

The fragment shader to implement this function is fairly simple. We are going to use GLSL mix
function to do a linear interpolation on the colors as seen below. The first two parameters of the

4

mix function are the colours to be mixed, and the last parameter specifies how the colours are
going to be mixed, according to the following expression:

ix(color1, color2, f) olor2 olor1 1)m = c × f + c × (− f

The fragment shader could be written as follows:

#version 330

uniform vec4 color1 = vec4(0.0, 0.0, 1.0, 1.0);
uniform vec4 color2 = vec4(1.0, 1.0, 0.5, 1.0);
in vec2 texCoordV;

out vec4 colorOut;

void main() {

vec2 t = texCoordV * 8.0;

float f = fract(t.s);

if (f < 0.4)
colorOut = color1;

else if (f < 0.5)
colorOut = mix(color1, color2, (f - 0.4)* 10.0) ;

else if (f < 0.9)
colorOut = color2;

else
colorOut = mix(color2, color1, (f - 0.9) * 10.0);

}

The result, presented in the image below (right), shows a considerable improvement.

Figure. Stripes computed with step and smooth function

Texturing with an image

5

First things first, i.e. lets see how to load an image, and create a texture with its data. To load
the image we are going to use the DevIL library. DevIL, formerly know as OpenIL, stands for
Developers Image Library. DevIL and OpenGL work in a similar fashion. First we need to
generate an image, then bind it, load it, and finally access its data. For the OpenGL side we
have to generate a texture, bind it, specify its parameters and send the image data to the driver.

A simple snippet to load a 2D image and create a texture is now presented:

ILboolean success;
unsigned int imageID;
GLuint textureID = 0;

// Load Texture Map
ilGenImages(1, &imageID);

ilBindImage(imageID);

// match image origin to OpenGL’s
ilEnable(IL_ORIGIN_SET);
ilOriginFunc(IL_ORIGIN_LOWER_LEFT);

success = ilLoadImage((ILstring)filename.c_str());

if (!success) {

VSLOG(mLogError, "Couldn't load texture: %s",
filename.c_str());

// The operation was not successful
// hence free image and texture
ilDeleteImages(1, &imageID);
return 0;

}

/* Convert image to RGBA, just to be on the safe side */
ilConvertImage(IL_RGBA, IL_UNSIGNED_BYTE);

/* Create and load textures to OpenGL */
glGenTextures(1, &textureID); /* Texture name generation */
glBindTexture(GL_TEXTURE_2D, textureID);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA,

ilGetInteger(IL_IMAGE_WIDTH),
ilGetInteger(IL_IMAGE_HEIGHT),
0, GL_RGBA, GL_UNSIGNED_BYTE,
ilGetData());

6

ilDeleteImages(1, &imageID);

The variable textureID will be used later on the OpenGL setup phase.

Texture IDs are assigned to texture units. The shader will receive, in a uniform variable, the
texture unit number, and it will access the texture unit assigned previously to the referred unit.

In OpenGL we can proceed as follows to assign a texture ID to a texture unit:

glActiveTexture(textureUnit);
glBindTexture(GL_TEXTURE_2D, textureID);

The variable textureUnit should then be sent to the shader, as a uniform, where it will be
declared as a sampler.

So, let’s consider an image that represents the above defined smoother function:

Figure. image enconding smooth color transition

In the shader we will receive the texture unit, and use it to access the texture. In GLSL we will
use function texture which takes as arguments the texture unit, and the texture coordinates.

Now, we present a fragment shader that gets the same effect as before, using the image above,
instead of a coded function inside the shader itself.

#version 330

uniform sampler2D texUnit;

in vec2 texCoordV;

out vec4 colorOut;

void main() {

vec2 t = texCoordV * 8.0;
colorOut = texture(texUnit, t);

}

Another option would be to encode the result of the mix function in the texture, but only for the
intensity, as shown in the image below.

7

Figure. Image encoding intensities

In this case, the shader would use the intensity to mix the colors, and it could be written as
follows:

#version 330

uniform vec4 color1 = vec4(0.0, 0.0, 1.0, 1.0);
uniform vec4 color2 = vec4(1.0, 1.0, 0.5, 1.0);

uniform sampler2D texUnit;

in vec2 texCoordV;

out vec4 colorOut;

void main() {

vec2 t = texCoordV * 8.0;

float f = texture(texUnit, t).r;
colorOut = mix(color1, color2, f) ;

}

Figure. Using image intensity. Left: alone. Right: with colors

8

Earth Example

For this example we’re going to start with the shaders for a simple lit sphere.

Vertex Shader
#version 330

layout (std140) uniform Matrices {

mat4 pvm;
mat4 viewModel;
mat4 view;
mat3 normal;

} Matrix;

layout (std140) uniform Lights {

vec4 dir;
} Light;

in vec4 position;
in vec3 normal;

out Data {

vec3 normal;
vec3 eye;
vec3 lightDir;

} DataOut;

void main () {

DataOut.normal = normalize(Matrix.normal * normal);
DataOut.lightDir = vec3(Matrix.view * Light.dir);
DataOut.eye = -vec3(Matrix.viewModel * position);

gl_Position = Matrix.pvm * position;

}

Fragment Shader

#version 330

in Data {

vec3 normal;
vec3 eye;
vec3 lightDir;

9

} DataIn;

out vec4 colorOut;

void main() {

vec4 dif;
vec4 spec = vec4(0.0);
float intSpec;

vec3 n = normalize(DataIn.normal);
vec3 l = normalize(DataIn.lightDir);
vec3 e = normalize(DataIn.eye);

float intensity = max(dot(n,l), 0.0);

if (intensity > 0.0) {

vec3 h = normalize(l + e);
float intSpec = max(dot(h,n), 0.0);
spec = vec4(1.0) * pow(intSpec,100);

}

colorOut = vec4(1.0) * intensity + spec;

}

Next we’re going to add the earth texture

Figure. Adding the earth texture

From a vertex shader point of view we just need to add the texture coordinates and pass them
to the fragment shader.

10

#version 330

layout (std140) uniform Matrices {

mat4 pvm;
mat4 viewModel;
mat4 view;
mat3 normal;

} Matrix;

layout (std140) uniform Lights {

vec4 dir;
} Light;

in vec4 position;
in vec3 normal;
in vec2 texCoord;

out Data {

vec3 normal;
vec3 eye;
vec3 lightDir;
vec2 texCoord;

} DataOut;

void main () {

DataOut.normal = normalize(Matrix.normal * normal);
DataOut.lightDir = vec3(Matrix.view * Light.dir);
DataOut.eye = -vec3(Matrix.viewModel * position);
DataOut.texCoord = texCoord;
gl_Position = Matrix.pvm * position;

}

In the fragment shader it is also a simple alteration, just multiply the diffuse intensity by the
texture color. The fragment shader could be upgraded as follows:

#version 330

uniform sampler2D texDay;

in Data {

vec3 normal;
vec3 eye;
vec3 lightDir;
vec2 texCoord;

} DataIn;

11

out vec4 colorOut;

void main() {

vec4 dif;
vec4 spec = vec4(0.0);
float intSpec;

vec3 n = normalize(DataIn.normal);
vec3 l = normalize(DataIn.lightDir);
vec3 e = normalize(DataIn.eye);

float intensity = max(dot(n,l), 0.0);

if (intensity > 0.0) {

vec3 h = normalize(l + e);
float intSpec = max(dot(h,n), 0.0);
spec = vec4(1.0) * pow(intSpec,100);

}

colorOut = intensity * texture(texDay, DataIn.texCoord) + spec;
}

Now we are going to add a night texture, but only on the “dark side”
of the planet. The goal is to use the day texture when the intensity is
above zero, and use the the night texture when the intensity is zero
or below. We are going to split the colour computation in these two
cases: day and night.

#version 330

uniform sampler2D texDay, texNight;

in Data {

vec3 normal;
vec3 eye;
vec3 lightDir;
vec2 texCoord;

} DataIn;

out vec4 colorOut;

12

void main() {

vec4 dif, colorDay, colorNight, spec = vec4(0.0);
float intSpec, posInt = 0.0;

vec3 n = normalize(DataIn.normal);
vec3 l = normalize(DataIn.lightDir);
vec3 e = normalize(DataIn.eye);

float intensity = max(dot(n,l), 0.0);

if (intensity > 0.0) {

vec3 h = normalize(l + e);
float intSpec = max(dot(h,n), 0.0);
spec = vec4(1.0) * pow(intSpec,100);

}

vec4 cD = texture(texDay, DataIn.texCoord);
vec4 cN = texture(texNight, DataIn.texCoord);

colorDay = intensity * cD + spec;
colorNight = cN;

vec4 color;
if (intensity > 0.0)

color = colorDay;
else

color = colorNight;

colorOut = color;

}

And the result is as follows:

Figure. Earth with day and night textures

13

Next we are going to smooth the transition between day and night to avoid the very harsh split
that can be observed in the figure above. To achieve this we are going to use the function mix
to combine the colors of the night and day textures in the transition region. The algorithm is
similar to the smooth stripes effect.

The main function of the fragment shader could be written as:

#version 330

uniform sampler2D texDay, texNight;

in Data {

vec3 normal;
vec3 eye;
vec3 lightDir;
vec2 texCoord;

} DataIn;

out vec4 colorOut;

void main() {

vec4 dif, colorDay, colorNight, spec = vec4(0.0);
float intSpec, posInt = 0.0;

vec3 n = normalize(DataIn.normal);
vec3 l = normalize(DataIn.lightDir);
vec3 e = normalize(DataIn.eye);

float intensity = max(dot(n,l), 0.0);

if (intensity > 0.0) {

vec3 h = normalize(l + e);
float intSpec = max(dot(h,n), 0.0);
spec = vec4(1.0) * pow(intSpec,100);

}

vec4 cD = texture(texDay, DataIn.texCoord);
vec4 cN = texture(texNight, DataIn.texCoord);

colorDay = intensity * cD + spec;
colorNight = cN;

vec4 color;
if (intensity > 0.1)

color = colorDay;
else if (intensity > 0.0)

14

// we are assuming a fixed intensity of 0.1 for mixing purposes
color = mix(cN, 0.1f * cD + spec, intensity* 10.0f);

else
color = colorNight;

colorOut = color;

}

The figure below shows the result of both versions.

Figure. Combining day and night, smoother version on the right.

Next we’re going to limit the specular reflections to the areas where there is water. There will be
no specular lighting coming from the land. A texture mask will be used for this purpose. This
texture uses only one channel, green, and this channel tells us where there is sea, intensity of 1,
and where there is land, intensity of 0.

Figure. Earth plus specular map

Another texture sampler must be declared and the computation of the day color must be altered.
Below are the required changes to the main function of the fragment shader.

#version 330

uniform sampler2D texDay, texNight, texSpec;

in Data {

15

vec3 normal;
vec3 eye;
vec3 lightDir;
vec2 texCoord;

} DataIn;

out vec4 colorOut;

void main() {

vec4 dif, colorDay, colorNight, spec = vec4(0.0);
float intSpec, posInt = 0.0;

vec3 n = normalize(DataIn.normal);
vec3 l = normalize(DataIn.lightDir);
vec3 e = normalize(DataIn.eye);

float intensity = max(dot(n,l), 0.0);

if (intensity > 0.0) {

vec3 h = normalize(l + e);
float intSpec = max(dot(h,n), 0.0);
spec = vec4(1.0) * pow(intSpec,100);

}

float gloss = texture(texSpec, DataIn.texCoord).r;

vec4 cD = texture(texDay, DataIn.texCoord);
vec4 cN = texture(texNight, DataIn.texCoord);

colorDay = intensity * cD + gloss * spec;
colorNight = cN;

vec4 color;
if (intensity > 0.1)

color = colorDay;
else if (intensity > 0.0)

color = mix(cN, 0.1f * cD + gloss * spec, intensity* 10.0f);
else

color = colorNight;

colorOut = color;

}

16

Next come the clouds. Again this is a one channel, this time we’re going to use the red channel,
although in a different image.

Figure. Earth with clouds

A few notes on adding the clouds:

1. clouds should replace color during the day.
2. clouds should prevent seeing night lights.

#version 330

uniform sampler2D texDay, texNight, texSpec, texClouds;

in Data {

vec3 normal;
vec3 eye;
vec3 lightDir;
vec2 texCoord;

} DataIn;

out vec4 colorOut;

void main() {

17

vec4 dif, colorDay, colorNight, spec = vec4(0.0);
float intSpec, posInt = 0.0;

vec3 n = normalize(DataIn.normal);
vec3 l = normalize(DataIn.lightDir);
vec3 e = normalize(DataIn.eye);

float intensity = max(dot(n,l), 0.0);

if (intensity > 0.0) {

vec3 h = normalize(l + e);
float intSpec = max(dot(h,n), 0.0);
spec = vec4(1.0) * pow(intSpec,100);

}

float gloss = texture(texSpec, DataIn.texCoord).r;
float clouds = texture(texClouds, DataIn.texCoord).r;

vec4 cD = texture(texDay, DataIn.texCoord);
vec4 cN = texture(texNight, DataIn.texCoord);

colorDay = clouds * intensity + (1-clouds) * intensity * cD + gloss *

spec;
colorNight = (1-clouds) * texture(texNight, DataIn.texCoord);

vec4 color;
if (intensity > 0.1)

color = colorDay;
else if (intensity > 0.0)

color = mix(colorNight ,
clouds * 0.1f + (1-clouds) * 0.1f * cD + gloss * spec,
intensity* 10.0f);

else
color = colorNight;

colorOut = color;

}

A final note regarding optimization

In the above example we used four textures. We could have saved the clouds and gloss
components in the alpha component of the night and day textures. Not only would we save
memory, but we would also save two texture lookups per fragment.

18

