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Introduction 
 
Once buffers have been created and the pipeline is built it is time to add the shaders. In here                   
we’re going to start with the minimal shader, a sort of “hello world” for GLSL, and add                 
features   incrementally   until   we   arrive   at   a   customisable   toon   shader. 
 
Before we start writing shaders, it is important to understand what is going on on each step                 
of the pipeline. Let’s assume a simple pipeline consisting of only two programmable stages:              
the   vertex   and   fragment   stages. 
 
Let’s consider that we have two buffers to feed the pipeline: a buffer with positions, and                
another with colors. The output will be a coloured image. Hence we can have an initial                
representation   of   our   pipeline   as   a   black   box   with   two   inputs   and   an   output: 
 

 
Figure   1.   The   pipeline   seen   as   a   black   box 

 
Inside the pipeline, the vertices are going to be processed, primitives will be built, fragments               
computed and coloured, until, finally, an image is produced. In more detail, we can consider               
the   scheme   in   Figure   2   as   a   simplified   depiction   of   the   components   inside   the   black   box. 
 
Initially, the vertices are fed, one by one, to the vertex shader. This shader processes each                
vertex individually, and outputs the transformed vertices. When primitive connectivity          
information becomes available, the primitives are assembled, and sent to the rasterisation            
phase. This is where the primitive is “split” into pixels, and for each pixel its attributes are                 
computed by interpolation. The set of pixel attributes, including its position on screen, is              
called a fragment. Fragments are then processed, one by one, by the fragment shader,              
which outputs pixels to a final stage where blending and other operations take place, and the                
final   pixel   is   produced. 
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Figure   2.   Simplified   pipeline   diagram 
 

 
 

Figure   3.   Data   centred   diagram 
 
Another perspective is presented in Figure 3, a data centred diagram, that shows what              
happens   in   each   stage.  
 

2 



Initially we have vertices, then primitives, and finally fragments. As shown in the diagram,              
after the primitive is assembled, the rasterization process generates a set of fragments.             
Each fragment has an immutable position in the final image. The interpolation phase is              
where all the attributes are going to be computed for each fragment. The interpolated              
attributes   are   then   fed   to   the   fragment   shader. 

 

The   Minimal   Shader 
 
A shader should always begin with the GLSL version for which it was written. This is                
accomplished with pragma  #version . As of OpenGL version 3.3, the GLSL version            
numbers   match   the   GL   version   (multiplied   by   100). 
 
The vertex shader must receive at least the position of the vertices, each a vector of 4 floats,                  
so   we’ll   consider   a   single   input   attribute.   The   header   part   of   our   shader   can   be: 
 
#version   150 
 
in   vec4   position; 
 
Every shader unit we write must have a  main function, similarly to the C programming               
language, but in GLSL there are no params and no return value. As in C, the main function                  
may call other user defined functions. The main function has access to the inputs of the                
shader, in this case, for each vertex we can access its position as stored in the buffer. The                  
simplest   shader   we   can   write   is   just   a   pass   through.  
 
The position attribute plays a particular role, since the rasterization and interpolation            
processes are based on it, as seen in the diagram from Figure 3. Hence, it is required that                  
GLSL knows which attribute to use as position. This is achieved when we compute the               
outputs   of   the   vertex   shader,   writing   to   a   particular   variable:    gl_Position . 
 
Hence,   our   main   function   could   be   as   simple   as: 
 
void   main()   { 

gl_Position   =   position; 
} 
 
Moving on to the fragment shader. This shader receives a fragment, and it must output a                
color. The only output of the vertex shader is the position, which is a GLSL defined variable.                 
Hence there is no need to declare any input. The shader has access to the input location of                  
the   pixel,   plus   its   depth.   However,   it   can   not   change   the   input   location,   only   its   depth. 
 
The fragment shader needs to declare an output variable for the color, for instance              
outColor ,   and   assign   it   a   value.  
 
The code for the minimal fragment shader will assign a constant value to this output. Here is                 
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an   example   of   such   a   shader: 
 
#version   150 
 
out   vec4   outColor; 
 
void   main()   { 

outColor   =   vec4(1.0,   1.0,   1.0,   1.0); 
} 
 

Adding   Color   -   Defining   Attributes 
 
Next   we’re   going   to   add   another   attribute   to   our   shader,   the   color.   This   is   going   to   be 
specified   for   each   vertex.   In   the   OpenGL   setup   we   now   need   two   buffers:   one   with   the 
positions   and   another   with   the   colors. 
 
The   vertex   shader   is   going   to   be   a   simple   pass   through   for   both   attributes.   The   novelty   in   this 
example   is   the   color   attribute.   Whereas   for   the   position,   OpenGL   has   a   predefined   variable, 
gl_Position ,   for   the   other   attributes   there   is   no   such   thing.   Hence   we   must   declare   an 
input   and   the   corresponding   output   in   the   vertex   shader. 
 
Since   the   output   of   the   vertex   shader   is   going   to   be   the   input   of   the   fragment   shader,   it 
makes   no   sense   to   add   a   suffix,   or   prefix,   “out”   to   the   variable.   A   good   strategy   to   keep 
things   clear   is   to   add   the   initial   of   the   shader   to   the   output   variable.   So   our   color   output   can 
be   named    colorV . 
 
#version   150 
//   input   attributes 
in   vec4   color; 
in   vec4   position; 
//   output   from   the   vertex   shader 
out   vec4   colorV; 
 
void   main()   { 

colorV   =   color; 
gl_Position   =   position;  

} 
 
The fragment shader will receive the fragments with the interpolated colors. So we must              
declare an input variable with the same name as the output from the vertex shader. This is                 
the   most   simple   way   for   GLSL   to   determine   which   variables   to   pair. 
 
The   code   for   the   fragment   shader   can   be   as   simple   as: 
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#version   150 
 
in   vec4   colorV; 
 
out   vec4   outColor; 
 
void   main()   { 

outColor   =   colorV; 
} 
 

Setting   Color   as   a   constant   per   mesh   -   Uniform   Variables 
Setting the color per vertex implies providing an array with as many colors as vertices to the                 
pipeline. In general we tend to have one color per mesh, or draw call, hence the color would                  
behave as a constant for each mesh. GLSL allows us to define per-draw-call constants, with               
the   qualifier    uniform . 
 
As   the   color   is   only   required   in   the   fragment   shader   we   simplify   the   vertex   shader   as   follows: 
 
#version   150 
 
in   vec4   position; 
 
void   main()   { 

gl_Position   =   position; 
} 
 
which   is   basically   the   first   shader   we   started   with. 
 
In   the   fragment   shader   the   color   is   not   a   fragment   input   anymore,   it   is   now   a   uniform 
variable. 
 
#version   150 
 
uniform   vec4   color; 
 
out   vec4   outColor; 
 
void   main()   { 

outColor   =   color; 
} 
 

Adding   Geometric   Transformations   -   Uniform   Variables 
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So far these shaders would draw the triangles considering that the input coordinates were              
already in clip space. This is because the shaders don’t take into account the camera,               
regarding both perspective and viewpoint, as well as possible geometric transformations the            
object   may   suffer. 
 
Commonly, we create a composite matrix with all these operations included, called the             
Projection View Model matrix. This matrix is constant per draw call, hence it is a uniform                
variable. The transformations in the matrix will be applied to all vertices, hence the vertex               
shader   needs   to   be   updated.   The   new   vertex   shader   is: 
 
#version   150 
 
in   vec4   position; 
 
//   pvm   is   a   4x4   matrix 
uniform   mat4   pvm; 
 
void   main()   { 

gl_Position   =   pvm   *   position;  
} 
 
The previous fragment shader can be coupled with this fragment shader to produce exactly              
what   fixed   function   OpenGL   would   provide   with   no   lighting. 

A   Simple   Toon   Shader 
 
A   toon   character   is   shaded   with   only   a   small   set   of   tones.   As   opposed   to 
real   life   lighting,   there   is   no   continuum   of   tones.   In   order   to   determine   the 
tone   to   use   we   first   compute   the   intensity   which   would   be   reflected   by   the 
surface   according   to   Lambert’s   law   for   diffuse   lighting.  
 
Lambert’s   law   takes   in   consideration   the   surface   normal   and   the   direction   from   the   surface   to 
the   light.   The   intensity   is   proportional   to   the   cosine   of   the   angle   between   these   two   vectors. 
 

 
Figure   4   -   Lambert’s   law 

 
The   equation   to   compute   the   reflected   intensity   is: I  
 

 K  os(α)I =  d × KL × c  
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where is the material diffuse coefficient, is the light intensity, and is the angle Kd       KL       α     
between   the   normal   vector   and   the   light’s   direction. 
 
The dot product between two vectors can be written as a function of the cosine of the angle                  
between   them 
 

ot(A, ) cos(A, )  d B =  B × A∣ ∣ × B∣ ∣  
 

When the magnitude of both vectors, and  , is equal to one, i.e. when both vectors are      A   B           
normalised, the dot product is equal to the cosine of the angle between them, providing a                
very   efficient   way   of   incorporating   Lambert’s   law   in   our   shaders. 
 
A   simple   algorithm   to   create   toon   lighting   is   as   follows: 
 

compute   intensity   I 
if   (   I   >   threshold1) 

color   =   vec4(1.0); 
else   if   (   I   >   threshold2) 

color   =   vec4(0.7); 
… 

 
We can define as many tones as desired using the above algorithm, but commonly only               
three   or   four   are   used. 

 
In the first version of our implementation, we are going to concentrate the computation on               
the   vertex   shader. 
 
As attributes for each vertex we need the position and normal vector. We also require the                
transformation   matrix   from   the   previous   example.  
 
To compute the cosine between the two vectors, the normal and the light direction, these               
must be in the same space. The light direction can be specified in world space or camera                 
space. Specifying the light in world space is more intuitive and does not depend on the                
camera position, hence, it would seem a good option. However, as we’ll see in later               
examples, we will need the light direction in camera space, hence we’re going to use camera                
space   as   our   default   for   the   light   direction.   This   leaves   us   with   two   options: 
 

1. Going for the more intuitive approach, we set the light direction in world space and               
transform   it   to   camera   space   in   the   shader; 

2. We transform the light direction from world space to camera space in the application              
and   provide   the   light   direction   in   this   later   space   to   the   shader. 

 
The second option makes more sense, performance wise, since it doesn’t require the shader              
to perform the same calculation, transforming the light direction to camera space, for every              
vertex. 
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Since the normal vector must geometrically transformed from local space to camera space.             
The view-model matrix can be used to transform points and directions from local space to               
camera space, however, this matrix does not guarantee the preservation of orthogonality. As             
we’ll   see   later   we’ll   need   a   new   matrix   to   transform   normal   vectors:   the   normal   matrix. 
 
Although the normal matrix guarantees a correct direction for the post transformed normal             
vector, the same can’t be said about its magnitude. Assuming that the normal vector              
provided by the application is unit length, the transformed vector is not guaranteed to keep               
its magnitude, so normalization of the post transformed normal vector is required in the              
general   case. 

Now, lets go back to our shader. Another required uniform variable is the light direction,               
which specifies a vector pointing to the light in world space. As outputs from the vertex                
shader,   besides   the   implicit    gl_Position ,   we   will   define   a   single   variable   for   the   color. 
 
A   possible   implementation   for   a   simple   toon   shader   is   as   follows.   First   the   vertex   shader: 
 
#version   150 
 
in   vec4   position; 
in   vec3   normal; 
 
out   vec4   colorV; 
 
uniform   mat4   pvm; 
uniform   mat3   normalMat; 
uniform   vec3   lightDir; 
 
void   main()   { 

//   normalise   both   vectors 
vec3   n   =   normalize(normalMat   *   normal); 
 
//   compute   the   cosine   using   the   dot   operation 
float   intensity   =   dot(n,   lightDir); 

 
//   compute   the   color   based   on   the   intensity 
if   (intensity   >   0.9) 

colorV   =   vec4(0.9); 
else   if   (intensity   >   0.5) 

colorV   =   vec4(0.6); 
else   if   (intensity   >   0.3) 

colorV   =   vec4(0.4); 
else 

colorV   =   vec4(0.0); 
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gl_Position   =   pvm   *   position; 
} 
 
The fragment shader is the same as in the previous example, it receives the interpolated               
colors   for   each   fragment   and   outputs   them. 
 
The   result   we   get   with   this   pair   of   shaders   is   similar   to   the   following   figure: 
 

 
 
As we can see the result is far from perfect. This is what we get when we compute colors per                    
vertex,   using   the   Gouraud   lighting   model.  

 
To try to fix this we are going to move, gradually, the computations to the fragment shader.                 
We start by moving the color computation to the fragment shader, i.e. the vertex shader will                
output   the   intensity   instead   of   the   color.   The   new   vertex   shader   is   as   follows: 
 
#version   150 

 
in   vec4   position; 
in   vec3   normal; 

 
out   float   intensityV; 

 
uniform   mat4   pvm; 
uniform   mat3   normalMat; 
uniform   vec3   lightDir; 
 
void   main()   { 

//   transform   and   normalise   both   vectors 
vec3   n   =   normalize(normalMat   *   normal); 

 
//   compute   the   intensity   using   the   dot   operation 
intensityV   =   dot(n,   lightDir); 

 
gl_Position   =   pvm   *   position; 

} 
 
The fragment shader receives the interpolated intensities for each fragment and computes            
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the   color: 
 
#version   150 
 
in   float   intensityV; 
 
out   vec4   outputF; 
 
void   main()   { 

vec4   color; 
//   compute   the   color   based   on   the   intensity 
if   (intensityV   >   0.9) 

color   =   vec4(0.9); 
else   if   (intensityV   >   0.5) 

color   =   vec4(0.6); 
else   if   (intensityV   >   0.3) 

color   =   vec4(0.4); 
else 

color   =   vec4(0.0); 
 

outputF   =   color; 
} 
 
And the result is as shown in the next figure. As can be seen it is far better. In this latter                     
example   we   are   interpolating   the   intensity   instead   of   the   discretized   color.  

 
 
 
 
What would happen if we did move the intensity computation to the fragment shader as               
well? That’s what our next version of the toon shader proposes. The vertex shader is as                
follows: 
 
#version   150 
 
in   vec4   position; 
in   vec3   normal; 
 
out   vec3   normalV; 
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uniform   mat4   pvm; 
uniform   mat3   normalMat; 
 
void   main()   { 

//   transform   and   normalise   normal 
normalV   =   normalize(normalMat   *   normal); 

 
gl_Position   =   pvm   *   position; 

} 
 
As can be seen the vertex shader is getting simpler. The fragment shader on the other hand                 
gets   a   little   bit   more   code: 
 
#version   150 
 
in   vec3   normalV; 
 
out   vec4   outputF; 
 
uniform   mat3   normalViewMat; 
uniform   vec3   lightDir; 
 
void   main()   { 
 

float   intensity   =   dot(normalV,lightDir); 
 

vec4   color; 
//   compute   the   color   based   on   the   intensity 
if   (intensity   >   0.9) 

color   =   vec4(0.9); 
else   if   (intensity   >   0.5) 

color   =   vec4(0.6); 
else   if   (intensity   >   0.3) 

color   =   vec4(0.4); 
else 

color   =   vec4(0.0); 
 

outputF   =   color; 
} 
 
The result from this pair of shaders is the same as before! This is because this pair of                  
shaders   performs   exactly   the   same   computations   as   the   previous   pair.  
 
However, when we look carefully at this shader we discover that there is something missing.               
The intensity is not being properly computed, since there is no guarantee that the              
interpolated normal vector is unit length. In fact, in the general case it won’t be unit length.                 
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The only particular case where it will be unit length is when all normals for a face are                  
identical. In the general case, where each vertex has a different normal, and considering              
points   inside   the   face,   the   normal   will   have   a   magnitude   smaller   than   one. 
 
So what we need to do is to normalize the normal before we compute the intensity. Instead                 
of   writing 
 

float   intensity   =   dot(normalV,lightDir); 
 
   we   should   write 
 

float   intensity   =   dot(normalize(normalV),lightDir); 
 
And the result we get is as follows. As can be seen, the curvature of the highlights is                  
smoother in this image. This is the Phong Lighting model, where lighting is computed per               
fragment,   with   interpolated   normals. 
 

 
 

Normalisation   Issues 
 
As presented in the last pair of shaders, the normal vector is normalised twice: once in the                 
vertex shader, and again the interpolated vector is normalised in the fragment shader. The              
question is do we really need to perform this normalisation twice? Are there any situations               
where   we   can   get   away   with   just   one   or   even   no   normalisations   at   all? 
 
First lets consider the normalisation in the vertex shader. The output vectors from the vertex               
shader   are   going   to   be   interpolated.   So   what   happens   if   they   are   not   normalised? 
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In the above figure, the interpolated vector should have a vertical direction. As can be seen,                
the largest vector has more influence on the direction of the interpolated vector. Normalising              
is   required   for   the   interpolated   vector   to   have   the   correct   direction. 
 
So when can we avoid the normalisation in the vertex shader? When the transformed normal               
is   unit   length.  
 
We can guarantee that the normal attribute, the input of the vertex shader, is unit length. So                 
the question now becomes: when does the transformation with the normal matrix preserves             
the length of the original normal vector? The answer is: when the normal matrix is               
orthonormal, or to put it in more simpler terms, when all the operations we perform in the                 
modeling   and   viewing   matrices   are   translations   and   rotations,   i.e.   no   scales.  
 
Next we focus on the fragment shader. What are the properties of the interpolated normal?               
We have already seen that as long as the normals per vertex are unit length, the direction of                  
the   interpolated   normal   is   correct.   But   what   about   its   magnitude? 
 

 
As can be seen from the figure, the magnitude of the interpolated vector is smaller than the                 
original vectors, both of which are unit length. The only situation where the interpolated              
normal   will   be   unit   length   is   when   all   normals   have   the   same   direction. 
 
Note that, if we had decided to transform the light direction in the vertex shader and pass the                  
interpolated vector to the fragment shader, the same reasoning does not apply. This is              
because the light direction is constant for all vertices, hence the interpolation would always              
provide   the   same   vector.  
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