
Core OpenGL - Setup
Notes for a Msc Course in Computer Graphics

University of Minho
António Ramires

Introduction

OpenGL setup includes building the pipeline, feeding it, and in some situations retrieving the
results. This short tutorial covers the initial part of the OpenGL setup, for an application to be
able to build a simple pipeline with a vertex and a fragment shader, and send all the relevant
data to the graphics pipeline.

Perhaps the most common usage of OpenGL is to render graphics. The example we will use in
here is therefore directed to rendering purposes. The input will be the data required to draw a
cube, the output will be a rendered cube. The shaders are very minimalist on purpose.

Although simple, this example will show all the most common aspects of OpenGL+GLSL usage.

Building the pipeline
First some terminology. The graphics pipeline is a sequence of stages, where some of these
stages are programmable. There are many possible configurations for the pipeline, since not all
the programmable stages are mandatory, only the first programmable stage is required, acting
as the input of the graphics pipeline. The remaining programmable stages serve specific
purposes, hence their usage is not required in all situations.

A shader is a (small) routine, usually called a shader program, that will be executed in the GPU,
in a programmable stage. A program can be seen as a sequence of shaders.

Currently there are five types of shader programs: vertex, two for tessellation, geometry, and
fragment. Figure 1 depicts a simplified diagram of the pipeline. The blue boxes represent the
programmable stages, and the white boxes are for those stages (still) using fixed function.

1

Figure 1 - Simplified pipeline diagram

Each programmable stage can have a shader program, that must be compiled separately. The
shaders are then attached to a program, which in turn is linked. This works in a similar way to a
multiple module C program.

A shader program processes each element separately, where an element can be a vertex, a
fragment, or even a primitive. The element’s data, it’s attributes in GLSL terminology, are part
of the input of the shader. For the first stage of the pipeline, the vertex shader, these are
provided by the application and are the vertices attributes. For each element an output (may be
composed of multiple variables) is computed and fed to the next pipeline stage.

The shader program, or just shader, may also access what we could call global variables. These
are variables that can be accessed in all pipeline stages, and are set by the application before

2

the OpenGL draw call. These variables are called uniforms in GLSL terminology since they are
constant during each OpenGL draw call. For instance, the light’s direction vector is a common
example of a uniform variable.

This short tutorial only covers the setup so we’re not going to talk about each particular shader.
Our pipeline is going be very simple, having only a vertex shader (mandatory) and a fragment
shader. We are going to assume that the source code for the shader programs is stored in two
separate text files. Figure 2 shows a general diagram of the required steps.

Figure 2 - Building a program

The following snippet of code shows how to do it in practice: creating a vertex and fragment
shaders, creating a program, ending up with a linked program (as long as the shader is correctly
written and the inputs of the vertex shader match the inputs of the fragment shader) :

GLuint createShader(
 GLenum shaderType,
 const std::string &fileName) {

 GLuint s;
 char *ss = NULL ;

 s = glCreateShader(shaderType);
 ss = textFileRead(fileName);
 const char * sss = ss;
 glShaderSource(v, 1 , &sss, NULL);

3

 free(ss)
 glCompileShader(s);

 // function that checks if a shader is compiled
 if (!checkShader(s)) {
 glDeleteShader(s);
 return 0 ;
 }
 else
 return s;
}

GLuint createProgram(
 const std::string &vertexFileName,
 const std::string &fragmentFileName) {

 GLuint v,f;
 v = createShader(GL_VERTEX_SHADER, vertexFileName);
 f = createShader(GL_FRAGMENT_SHADER, fragmentFileName);

 if (!v || &f)
 return 0 ;

 GLuint p;

 p = glCreateProgram();
 glAttachShader(p,v);
 glAttachShader(p,f);
 glLinkProgram(p);

 if (!checkProgram(p)) {
 // flags all associated shaders for deletion
 glDeleteProgram(p);
 return 0 ;
 }

 return p;
}

It is good practice to check for errors after these operations. These errors will tell us if there is
something wrong with the syntax of our shaders, and if they are compatible to be linked into a
program. The code snippet below shows how this can be achieved:

4

bool checkShader (GLuint shader) {

 // first check if the shader has compiled
 int res ;
 glGetShaderiv (shader , GL_COMPILE_STATUS , & res);
 if (res == GL_TRUE)
 return true ;

 // if not compiled print message with information
 GLint infologLength , charsWritten ;
 char infoLog [1024];
 glGetShaderiv (shader , GL_INFO_LOG_LENGTH , & infologLength);
 if (infologLength > 0)
 {
 glGetShaderInfoLog (v , infologLength ,
 & charsWritten , infoLog);
 printf ("Shader Infolog: %s\n" , infoLog);
 }
 return false ;
}

bool checkProgram (GLuint program) {

 // first check if the program is linked
 int res ;
 glGetProgramiv (program , GL_LINK_STATUS , & res);
 if (res == GL_TRUE)
 return true ;

 // if not linked print message with information
 GLint infologLength , charsWritten ;
 char infoLog [1024];
 glGetProgramiv (program , GL_INFO_LOG_LENGTH , & infologLength);
 if (infologLength > 0)
 {
 glGetProgramInfoLog (v , infologLength ,
 & charsWritten , infoLog);
 printf ("Program Infolog: %s\n" , infoLog);
 }
 return false ;
}

5

Feeding the pipeline

To use core OpenGL, the graphics pipeline must be fed with data, which will be processed by
shaders. The outcome of this processing can be an image, or just data with no graphical
representation.

To draw an object we need to specify its vertices, and how they are connected to define faces.
Furthermore, vertices have attributes, commonly position, normals, and texture coordinates.

The number and type of attributes for rendering is shader dependent. The vertex shader defines
what are the relevant attributes, declaring them as inputs.

To define the values for these attributes, we initially place the data in an array. In here we are
going to consider an array for each attribute, although these can also be interleaved in a single
array.

// Data for a set of triangles
float position[] = {-1.0f, 0.0f, -5.0f, 1.0f,

 1.0f, 0.0f, -5.0f, 1.0f,
 0.0f, 2.0f, -5.0f, 1.0f, …};

 float textureCoord[] = { … };

float normal[] = { … };

In the above code we are assuming that each vertex takes four floats. Considering the “index i ”
for all arrays we get the set of attributes for vertex i . Note the quotes around index i . This is not
the traditional C style index for an array. Considering the array position the first vertex starts at
position 0, the second at position 4, and so on. So by index 2 we actually mean the second
vertex and not the second position of the array. Therefore, index 2 in the position array means
the 8th, 9th, 10th and 11th positions.

Defining an array of indices allows us to connect these vertices arbitrarily to create primitives.
So we can add the following array with indices:

unsigned integer index[] = {0, 1, 2, …};

For each input attribute, we need to get its program handle. In OpenGL these handles are called
locations . So assuming that we’ve created a program named p , successfully linked it, and that
the vertex shader of this program contains an input attribute named pos , then we can write:

posLoc = glGetAttribLocation(p,"pos");

6

When working with multiple programs and shaders it is convenient (although not required) to
ensure that the same attribute across programs has the same location, for instance the position
attribute could always be on location 0. To achieve this we must specify the desired location,
before linking the program, with function glBindAttribLocation . For instance to bind
attribute “pos” in program p to location 0 we could write:

glBindAttribLocation(p, 0, “pos”);

The next step is to create a set of buffers with this data. OpenGL allows us to define an array of
buffers using a Vertex Array Object, or VAO.

First we create a VAO object and bind it:

GLuint vao;
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);

For each individual buffer, we can then proceed to do as follows: first we create each buffer,
bind it, fill it with data, and finally associate it with an input attribute of the graphics pipeline.

GLuint buffer;
glGenBuffers(1, &buffer);

// bind buffer for positions and copy data into buffer
glBindBuffer(GL_ARRAY_BUFFER, buffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(position),

position, GL_STATIC_DRAW);
 glEnableVertexAttribArray(posLoc);
 glVertexAttribPointer(posLoc , 4, GL_FLOAT, 0, 0, 0);

For the index array, a similar approach is used, the main difference being in the type of the
buffer:

GLuint buffer;
glGenBuffers(1, &buffer);

// bind buffer for positions and copy data into buffer
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(index),

index, GL_STATIC_DRAW);

7

As described, attributes are local variables for a vertex, meaning their values change per vertex.
GLSL also allows the definition of global variables, called “uniforms”. These are variables that
are constant, at least for each draw call.

As for attributes, it is required to get a handle for uniforms. So let’s assume we have a uniform
variable named myMatrix . To set its value, we must first get its location, as shown below:

float mat[16];
loc = glGetUniformLocation(p, “myMatrix”);
glProgramUniformMatrix4fv(p, loc, sizeof(float)*16, false, mat);

All the above steps could be part of the setup bit of the application. In the rendering function, we
will ask OpenGL to draw the above defined geometry. To achieve this we can use the following,
for VAOs containing an index buffer:

glUseProgram(p);
glBindVertexArray(vao);
glDrawElements(GL_TRIANGLES, index.size(),

GL_UNSIGNED_INT, NULL);

or, considering VAOs without indices:

glUseProgram(p);
glBindVertexArray(vao);
glDrawArrays(GL_TRIANGLES, 0, count);

8

